

Lecture 3

Wireless Internet-oriented Infrastructures and Protocols

Mobile Business I (WS 2023/24)

Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security Johann Wolfgang Goethe University Frankfurt a. M.

Guiding Question of this Lecture

Why did Wireless LAN not succeed over GSM and UMTS?

DUSINESS Wireless Internet-oriented Infrastructures & Protocols

- Wireless LAN
 - Basics
 - Components and Infrastructure Types
 - State-of-the art Encryption
 - Mobility and Roaming
- Mobile IP Mobility support for TCP/IP
- IP-based Radio Access Networks

Wireless LAN Basics General

- Wireless communication based on radio as transport medium
- Cell based architecture
- Extension to a (wire based) LAN
- One cell serves an area in which PCs, laptops, and other connected devices can move freely.
- The term "Wi-Fi" is
 - used in general English as synonym for a Wireless Local Area Network (WLAN),
 - a trademark owned by the Wi-Fi Alliance,
 a trade association promoting Wi-Fi technology.

Wireless LAN Basics Radio Cell

- The basic module of a Wireless LAN is a so-called radio cell.
- A radio cell covers a circular area that PCs or laptops and other connected devices are able to use.
- A WLAN radio cell can be an add-on for already existing cable-based networks.

Wireless LAN Basics Beacon Frame

- The Access Point is transferring a periodical beacon. A beacon communicates the Service Set Identifier (SSID) and other important operational parameters (channel, ...)
- A Wireless LAN client sends a probe request. The Access Point answers with a probe response. If there is an agreement, the Wireless LAN client starts the communication over the Access Point.
- A more detailed description of beacon frames can be found in [Sauter2008].

Wireless LAN Basics 802.11 Standard

[IEEE] [Sauter 2008]

Standard	Description			
802.11	Protocol for transmission methods for wireless networks, defined in 1997 for 2 MBit/s at 2,4 GHz			
802.11a	Wireless LAN up to 54 MBit/s at 5 GHz			
802.11b	Wireless LAN up to 11 MBit/s at 2,4 GHz			
802.11f	Roaming between access points of different manufacturers (published in 2003 and withdrawn by IEEE in 2006) [IEEE2010]			
802.11g	Wireless LAN up to 54 MBit/s at 2,4 GHz			
802.11i	Extended security features: AES, 802.1x, TKIP			
802.11n	Wireless LAN up to 450 MBit/s when using 3 spatial streams (3x 150 Mbit/s) at 2,4 GHz or 5 GHz *)			
802.11r	Fast Roaming/Fast BSS Transition			
802.11ac	Wireless LAN using 3 spatial streams at 5 GHz: Up to 1.3 GBit/s (3x 433 Mbit/s) or even up to 2.6 GBit/s (3x 867 Mbit/s, part of 802.11ac Wave2) *) **)			
802.11ad	Wireless LAN at 60 GHz: Up to 7 GBit/s			
802.11ah	Wi-Fi HaLow for Smart Home and connected devices (900 MHz, increased distance, ~1km)			
802.11aj	A derivative of 802.11ad for use in the 45 GHz unlicensed spectrum in some regions of the world (specifically China)			
802.11ax	New Standard operating in the existing 2.4 GHz and 5 GHz spectrums but incorporating additional bands between 1 and 7 GHz. Achieved 4x increase to user throughput.			
802.11ay	Upcoming Standard extending 802.11ad by defining a new physical layer for 802.11 networks to operate in the 60 GHz spectrum			
802.11ba	Amendment of IEEE 802.11 enabling energy efficient operation for data reception without increasing latency			
802.11be	Potential next amendment likely be designated Wi-Fi 7 building upon 802.11ax			

*) 802.11n and 802.11ac data rates depend on the number of antennas and spatial streams ("parallele räumliche Inhaltsströme") supported by the hardware. 802.11ac devices often support 3 streams at most. 802.11n specifies a maximum of 4 streams, 802.11ac a maximum of 8 streams.

**) 802.11ac is a 5 GHz-only standard, so dual-band access points and clients will probably continue to use 802.11n at 2.4 GHz in parallel.

Wireless LAN Basics 802.11 Standard In Process

Standard	Description
802.11be	Extremely High Throughput
802.11bf	WLAN Sensing
802.11bh	Randomized and Changing MAC Addresses
802.11me	802.11 Accumulated Maintenance Changes
802.11bi	Enhanced Data Privacy
802.11bk	320 MHz Positioning

Wireless LAN Basics Bandwidth Volatility

 Wireless LAN bandwidth depends on the chosen standard, the distance between client and access point, and the construction and quantity of walls.

Bandwidth 802.11b	Outside	Inside (Office)	Inside (House)
11 Mbps	~ 160 m	~ 50 m	< 20 m or max. 1 wall
5.5 Mbps	~ 270 m	~ 70 m	< 30 m or max. 2 walls
2 Mbps	~ 400 m	~ 90 m	< 40 m or max. 3 walls
1 Mbps	~ 550 m	~ 115 m	< 50 m or max. 4 walls

[Lanz 2003]

 802.11b uses the 2.4 GHz frequency band. Reach depends even more on local circumstances when using newer IEEE standards together with 5 GHz frequency band.

- Wireless LAN
 - Basics
 - Components and Infrastructure Types
 - State-of-the art Encryption
 - Mobility and Roaming
- Mobile IP Mobility support for TCP/IP
- IP-based Radio Access Networks

Wireless LAN Components

- Components (802.11b)
 - Access Point (AP)

Sender and receiver station that allows the connecting of many stations

- Wireless LAN
 - Basics
 - Components and Infrastructure Types
 - State-of-the art Encryption
 - Mobility and Roaming
- Mobile IP Mobility support for TCP/IP
- IP-based Radio Access Networks

Wireless LAN State-of-the art Encryption

- There are numerous methods for Wireless LAN encryption.
- We are only looking at methods that use a pre-shared key (PSK).

- WEP encryption methods are outdated and hence insecure:
 - Wired Equivalent Privacy (WEP) 64-bit
 - Wired Equivalent Privacy (WEP) 128-bit
- WEP 128-bit can be by-passed within minutes. [Heise 2007]

Wireless LAN State-of-the art Encryption

 Wi-Fi Protected Access (WPA) was developed by the Wi-Fi Alliance. [Wi-Fi 2010]

- There are two versions of
 Wi-Fi Protected Access, WPA and WPA2:
 - WPA includes most of the 802.11i standard, but is outdated and insecure as it has various weaknesses:
 - Vulnerability to dictionary attacks when using a weak PSK
 - Other weaknesses inherited from earlier standards [ArsT 2008]
 - WPA2 includes 802.11i to its full extent and also the Advanced Encryption Standard (AES).

Key Reinstallation Attacks (KRACKs) against WPA2

- The attack is mainly against the *4-way handshake* of the WPA2 protocol.
- The 4-way handshake protocol is mathematically proven, but it only assures the negotiated key remains secret, and that handshake messages cannot be forged.
- The attack doesn't leak the encryption key, but sensitive information (usernames, passwords, ...) can be stolen.
- Discovered by Mathy Vanhoef a post-doctoral researcher at KU Leuven
- Background material and video on the attack via <u>https://www.krackattacks.com</u>

Overview res & Protocols

- Wireless LAN
 - Basics
 - Components and Infrastructure Types
 - State-of-the art Encryption
 - Mobility and Roaming
- Mobile IP Mobility support for TCP/IP
- IP-based Radio Access Networks

Restrictions of WLAN Mobility

- No existing standard for "handover" or "roaming" between:
 - Access points (AP)
 - Different providers of APs
- Change of AP leads to
 - Connection interrupt
 - New connection/authentication
- Non-uniform accounting / user administration
- → Some of the reasons why WLAN will not replace mobile communication networks

Wireless LAN "Roaming"

- Approaches to perform "roaming"
 - By a combination of several access points a so-called distribution system is growing.
 - Every access point covers one radio cell.
 - Upon leaving a radio cell the station starts scanning for other existing access points (which may use the same SSID, but a different transmission channel) and tries to connect.
 - Following the connection to a new access point the distribution system and the access point that was used before will be informed.

Wireless LAN "Roaming"

Station (STA)

 Computer with access to the wireless medium and radio connect to the AP

Basic Service Set (BSS)

 Group of stations, which use the same radio frequency

Access Point

 Station which is integrated into the radio as well as the fixed local area network (distribution system)

Portal

- Transfer into another network

Distribution systems

 Connection of different cells for building a larger network (ESS: Extended Service Set)

Wireless LAN Mobility Fast BSS Transition (802.11r)

- BSS = Basic Service Set. A Basic Service Set (BSS) is one Wireless LAN access point + all associated stations.
- The client decides which access point to (re)connect to in case the connection to the previous access point is lost (e.g. due to the client moving out of range).
- Wireless security protocols induce interruptions of several seconds during necessary reconnection (problem when using Voice-over-IP telephony connections!).
- Since 2008 a standard for "roaming" between Wireless LAN access points is available:
 IEEE 802.11r = fast roaming and fast BSS transition
 - As of February 2013, no Intel devices support the 802.11r standard. [Intel 2013]
 - For Apple devices iOS 6 introduced support for 802.11r (optimized client roaming on enterprise Wi-Fi networks). [Apple 2012]

Overview

- Wireless LAN
 - Basics
 - Components and Infrastructure Types
 - State-of-the art Encryption
 - Mobility and Roaming
- Mobile IP Mobility support for TCP/IP
- IP-based Radio Access Networks

Mobile IP Mobility with TCP/IP

The situation today:

- Separate IP addresses in the office and at home
- DHCP dynamic IP address assignment
- Dial-up with dynamic IP addresses
 - Continuous accessibility via one IP address is not guaranteed.
 - Connection interruptions during access point switches

25

e.g. 141.2.74.211

Mobile IP Addressing of Mobile Devices

Standards

- Internet Engineering Task Force (IETF) www.ietf.org
- RFC 2002: IP Mobility Support
- RFC 2977: Mobile IP Authentication, Authorization, and Accounting Requirements

Mobile IP Mobility solution - Layer 3

But redirection implies

- A longer route than before
- Higher runtime
- Avoidable usage of resources

Security for Mobile IP

- Possible attack with illegitimate binding update: Capture the route and redirect the TCP/IP session.

Therefore, authentication of Binding Update (BU) messages and address check is required.

- In addition, observation of user movements through their Binding Updates!
 - Anonymous communication-channels are necessary to protect privacy.

- In the Domain Name System a domain-name belongs to a fixed IP address (e.g. www.m-lehrstuhl.de = 141.2.66.180).
 - Changing these addresses requires an updatetime of several hours
 this is no usable solution.
- Better solution: Dynamic DNS
 - Modification time: 15 minutes
 - Problem: applications resolve a name just once and do not query possible address changes thereafter.

Overview

DUSINESS Wireless Internet-oriented Infrastructures & Protocols

- Wireless LAN
 - Basics
 - Components and Infrastructure Types
 - State-of-the art Encryption
 - Mobility and Roaming
- Mobile IP Mobility support for TCP/IP

IP-based Radio Access Networks

UMTS (3G) System Architecture

UTRAN: UMTS RNS 1 UTRAN CORE-**Terrestrial** Node B Network **Radio Access** Network lub lu CS Node B lub RNS: Radio RNC Node B UMTS Core network Network lu PS Subsystem is not shown here in detail lub UMTS Core network corresponds to Network- &> RNC: Radio lur Node B Switching Subsystem (NSS) Network in GSM Controller Node B (controls the lu C\$ Node Bs) RNC lub lu PS Node B Node B: UMTS base stations lub (equivalent to RNS 2 base u-Sehnittst Node B transceiver stations (BTS) in GSM

Radio Access Networks (RAN)

- Part of a mobile telecommunication system
- Provides connection between device (phone, computer, or machine) and core network
- Implements certain radio access technologies, e.g. GSM or 3G
- Examples of radio access network types are:
 - GRAN: GSM radio access network
 - GERAN: essentially the same as GRAN but specifying the inclusion of EDGE packet radio services
 - UTRAN: UMTS radio access network
 - E-UTRAN: Long Term Evolution (LTE) high speed, low latency radio access network
 - C-RAN: Centralized or Cloud-based radio access network
 - VRAN: Virtualized RAN
 - ORAN: Open Radio Access Network (Open RAN)
- Some handsets have capability to be simultaneously connected to multiple RANs (dual-mode handsets).

IP-based Radio Access Networks (IP RAN)

- All different backhaul technologies may be collapsed onto a single IP/MPLS network (MPLS = Multiprotocol Label Switching) → End-to-end IP approach
- Support for legacy services and reduced cost per bit
- 2G, 3G, and 4G radio technologies transparently supported
- Cost savings possible due to alternative transport media (such as Ethernet and DSL)

IP-based Telephony

- LTE networks are IP-based systems (all-IP networks)
 - Voice calls in GSM and 3G (UMTS) are circuit-switched.
 - Only packet-switched communication is supported in LTE networks - no circuit-switched connections/calls/telephony!

- Five different approaches to provide telephony services in Long Term Evolution networks:
 - CSFB (Circuit Switched Fallback)
 - VoLGA (Voice over LTE via GAN Generic Access Network)
 - VoLTE (Voice Over LTE) based on the IP Multimedia Subsystem (IMS) network.
 - **SVLTE** (Simultaneous Voice and LTE, handset-based approach)
 - Usage of Over The Top contents (OTT) (e.g. Skype) not actively marketed by mobile operators

Literature (1)

- [Apple 2012] Apple Inc. iOS 6: Wi-Fi network roaming with 802.11k and 802.11r. http://support.apple.com/kb/HT5535, accessed 2013-10-11.
- [ArsT 2008] Battered, but not broken: understanding the WPA crack". Ars Technica. 2008-11-06, accessed 2013-10-11.
- [Cisco 2011] Benefits to Using Layer 3 Access for IP Radio Access Networks (2011), http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/unified-ran-backhaul/white_Paper_c11-663732.pdf, accessed 2014-10-28.
- [Cisco 2014] IP RAN Radio Access Networks, http://www.cisco.com/web/IN/solutions/sp/mobile_internet/ipran_radio _access_networks.html#~overview, accessed 2014-10-28.
- [Heise 2007] Heise Online: WEP-Verschlüsselung von WLANs in unter einer Minute geknackt (04.04.2007), accessed 2010-10-10.
- [IEEE] IEEE, http://grouper.ieee.org/groups/802/11/, accessed 2013-10-09.
- [IEEE 1996] IEEE (1996), 802.11 Tutorial MAC Entity, 1996, http://grouper.ieee.org/groups/802/11/Tutorial/MAC.pdf, accessed 2013-10-28
- [IEEE 2010] OFFICIAL IEEE 802.11 WORKING GROUP PROJECT TIMELINES http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm, accessed 2010-10-10.

Literature (2)

- [Intel 2013] Intel Support Community. https://communities.intel.com/thread/34273, accessed 2013-10-11.
- [Lanz 2003] Lanz, R. (2003) "Wireless Local Area Network", Berner Fachhochschule, Hochschule für Technik und Architektur
- [Radmacher 2004] Radmacher, M. (2004), "Sicherheits- und Schwachstellenanalyse entlang des Wireless-LAN-Protokollstacks", Universität Duisburg-Essen, p. 116
- [Sauter 2008] Sauter, M. (2008): Grundkurs Mobile Kommunikationssysteme (3., erweiterte Auflage), Vieweg, Wiesbaden.
- [Wiki 2014] Wikipedia, the free encyclopedia (2014): Radio access network, http://en.wikipedia.org/wiki/Radio_access_network, accessed 2014-10-28.
- [Winter 2003] Winter M.-A. (2003) "WLAN: Kostenlos durch Sicherheitslücken surfen", http://www.teltarif.de/arch/2003/kw06/s9809.html, accessed 2013-10-28
- [Wi-Fi 2010] The Wi-Fi Alliance, http://www.wi-fi.org, accessed 2013-10-28.

PSK Pre-shared key

- The pre-shared key method of authentication <u>enables a remote host</u> to authenticate itself by providing a <u>secret key</u>, which is known to both hosts. This key is pre-configured by the administrator, and is used along with the <u>Diffie-Hellman</u> <u>shared secret</u> to derive cryptographic keys used to protect and authenticate data that flows during the phase 1 negotiation.
- The pre-shared key is a shared secret between the two IKE peers, and any host that does not know the shared key <u>cannot</u> enter into negotiation. IKE maintains a list of all the remote hosts that are authorized to negotiate. This list contains the identity of the remote host and the pre-shared key known to that host. [IBM2021]

The WPA2-PSK four-way hand- shaking procedure starts when the wireless client passes the authentication and the association states.

WPA2-PSK key generation

- WPA2-PSK protocol, essentials and methods:
 - 1. PSK: Pre-shared key (PSK) is derived from the pass-phrase that was entered manually on both the wireless client and the AP. The pass-phrase length is 8 to 63 characters.
 - 2. PMK: Using a Password-Based Key Derivation Function 2 (PBKDF2), the passphrase, SSID and SSID length are hashed 4096 times to produce a 256-bit Pair Master Key (PMK) as shown in Figure.
 - **3. PTK:** PMK, the phrase "Pairwise key expansion", AP's MAC address and the wireless client's MAC address, a random number generated by the AP (ANonce) and a random number generated by the wireless client (SNonce) will be fed to a pseudo-random function (PRF) to produce Pair Temporary Key (PTK).
 - 4. Triple essential keys (KCK: Key Confirmation Key, KEK: Key Encryption Key, TK: Temporal key)

WPA2-PSK Handshake Protocol

