
Chair of Mobile Business & 
Multilateral Security

Business Informatics 2 (PWIN) 
SS 2021

ICS Development II
Object Orientation & UML

Prof. Dr. Kai Rannenberg

Chair of Mobile Business & Multilateral Security
Johann Wolfgang Goethe University Frankfurt a. M.

Lecture 09

1



Agenda

§ Object-Oriented Approach

§ Unified Modelling Language (UML)

§ Model-Driven Development and Architectures

2



The Idea of 
Object Orientation (OO)

§ OO sees things that are part of the real world. 

§ OO-Models represent only the relevant aspects of real world things.

§ Objects store their data by themselves and encapsulate them for 
protection from other objects.

• Name
• Phone No.
• E-Mail
• Teaching Subjects

3



Object-Oriented Software 
Development

§ Consideration of software as collection of 
interacting objects that work together in order 
to accomplish tasks.

§ Objects – things in a computer system that can 
respond to messages.

§ Conceptually, no processes, programs, data entities, 
or files are defined – just objects.

4



Basic OO Elements

§ Class
§ A class is a template for an object. It contains variables, 

constants and methods.

§ Object
§ Objects are instances of classes, which exist during runtime. 

Multiple objects can be instantiated from a single class.

§ Association
§ Relation between classes or objects

§ Instantiation
§ Creation of objects according to the template of a class during 

runtime

5



Basic OO Elements 

Book Library

1..* 0..*

Novel Non-fiction book City library

Class

Object

Association

Relation
Class - Object

Multiplicity

6



Basic OO Concepts

§ Encapsulation
§ Data is stored in an object and can only be accessed via the offered 

methods.

§ Inheritance
§ Classes can inherit attributes or methods from other classes. The 

bequeathing class is called “super class” or “parent class”. The inheriting 
class is called a “subclass”.

MyCounter
- count

+ increase()
+ decrease()

Increasing/decreasing
the “count” property only 
works by sending a message to 
the “increase” or “decreasing” 
operation.

Car

Convertible Roadster Coupé

Class
Attribute

Methods

7



Basic OO Concepts

§ Messages
§ A message is sent to an object in order to instruct it to call a 

method. 

Polymorphism
§ If a message is sent to objects of different classes, these objects 

return different results, as the called method can be implemented 
differently for each object. 

§ For instance, the message “Print” sent to the objects “Address List” 
and “Order”

MyCounter

- count

+ increase()
+ decrease()

MyCounter.increase(1)

Address List

+ print()

Order

+ print()

Object.print()

8



OO Terminology and Concepts

§ Object-oriented Analysis (OOA)

§ Object-oriented Design (OOD)

§ Object-oriented Programming (OOP)

9



Object-Oriented Analysis (OOA)

§ OOA describes a system as a group of interacting 
objects, generating a conceptual model within a 
problem domain.

§ This results in a description of how the software is 
required to behave.

§ The conceptual model does not describe any 
implementation details. Those are developed in the 
design phase.

10



Object-Oriented Design (OOD)

§ Takes the conceptual model generated by object 
oriented analysis as input.

§ Refines each object type to be implemented with a 
specific language according to its environmental 
context

§ Takes into account the chosen architecture, 
technological and environmental constraints

§ Typical Output: Class-Diagram

11



Object-Oriented 
Programming (OOP)

§ OOP is a programming paradigm for software 

§ It centres around the concept of “Objects”, which 
consist of data structures and methods

§ It takes the results of the OOD as input

§ OO languages: Java, C++, C#.NET, VB.NET

12



OO Development Process

§ Object-oriented Analysis (OOA)

§ Object-oriented Design (OOD)

§ Object-oriented Programming (OOP)

§ OO Software

13



Agenda

§ Object-Oriented Approach

§ Unified Modelling Language (UML)

§ Model-Driven Development and Architectures

14



Unified Modelling Language (UML)

§ Modelling language developed by Booch, Jacobson und 
Rumbaugh in 1996

§ Standard of the OMG (Object Management Group)
§ Current Version: 2.5.1 (December 2017)

§ Standardisation …
§ of different object-oriented notations and
§ of methods through all phases of the software 

development
by using different types of models (data-oriented, 

object-oriented, process-oriented, etc.).

15



UML Concept

§ Supports analysis and design of object-oriented software 
systems

§ UML includes multiple Views on a system
§ Each View specifies and documents a system from a 

different perspective.
§ Each View is supported by one or more diagrams.

§ UML is not a process model à UML does not define a 
process for creating UML models.

16



UML Structure

§ Basic elements
§ Object-oriented notation elements
§ Additional elements to describe the modelled system (e.g. 

activities, actor, etc.)

§ Diagrams
§ Composition of notation elements
§ Represents a certain View on a system

§ Complete model
§ The complete model is based on the basic elements.
§ Different Views on the complete model by different diagram 

types 

17



UML Structure

Complete model

Diagrams

Basic elements

18



UML Views

§ Use case view
§ Logical view
§ Implementation view
§ Process view
§ Deployment view

19

Logical 
View

Deployment
View

Process
View

Implementation 
View

Use Case 
View

Source: Hitz et al., 2015



Use Case View

§ Describes high level functionalities of a system

§ Used by stakeholders, designers, developers 
and testers

§ Represented by use case diagrams

§ Serves as the basis for other views

20



Logical View 

§ Describes functionalities to be designed and 
implemented

§ Describes static and dynamic aspects of a 
system

§ Mostly used by designers and developers

§ Represented by class diagrams, object diagrams 
(static view), state diagrams, interaction and 
activity diagrams (dynamic view)

21



Implementation View 

§ Describes the organisation of software 
components

§ It divides the logical entities into actual 
software components

§ Represented by component diagrams

§ Mostly used by developers

22



Process View

§ Describes processes in a system

§ Mostly used by developers and testers

§ Represented by state, interaction and activity 
diagrams

§ Supports concurrency and handling of 
asynchronous events

23



Deployment View

§ Describes physical architecture and 
assignment of components to architectural 
elements

§ Mostly used by designers, developers and 
managers

§ Represented by package, component and 
deployment diagrams

24



UML Diagrams
Examples

§ Use case diagram

§ Class diagram
§ Object diagram

§ Activity diagram
§ Sequence diagram
§ Collaboration diagram
§ State diagram

§ Component diagram
§ Deployment diagram

Structural diagrams

Use case diagram

Behavioural diagrams

Architectural diagrams Architectural elements

Dynamic elements

Static elements

25



Use Case Diagram

§ Use cases describe the functionality, which a system has to 
provide

§ The sum of all “Use cases” comprises the technical 
requirements of a system.

§ Use cases define the interfaces between a user and the 
system

§ Specification is developed together with the 
client/customer

26



§ Use Case

§ Representation of a sequence of actions that provides 
value to an actor. 

§ User of the system

§ Association

§ Interaction of an actor with a use case

UseCase

Actor

Actor

UseCase

27

Use Case Diagram
Notation Elements



§ Generalisation
§ Generalisation of Use Cases

§ UseCase2 generalises the behaviour of UseCase1

UseCase1 UseCase2
Repair Computer

Repair PC Repair Mac

28

Use Case Diagram
Notation Elements



§ Extends
§ Extends a Use Case
§ UseCase2 extends UseCase1

§ Includes
§ Inclusion of a Use Case
§ UseCase1 includes the behaviour of UseCase2

<<extend>>
UseCase2UseCase1

<<extend>>
Check Credit

Standing
Get external

expertise

<<include>>
UseCase2UseCase1

Check Stock
Process
Order

<<include>>

29

Use Case Diagram
Notation Elements



Use Case Diagram
(Example)

Check-In
automatisches

Check-In
Express Check-In

Boardingkarte
aushändigen

Boarding

Gepäckabfertigung

Passagier
Check-In Beauftragter

Zollbehörde des Flughafens

Check-In Agent
Passenger

Automated
Check- In

Delivery of 
Boarding 
Ticket

Baggage Check-In Customs Authority

<<include>>

<<include>>
<<

in
cl

ud
e>

>

30



Structural Diagrams

§ Class diagrams
§ Representation of the static structure of a software 

system
§ Description of logical relations between structural 

elements
§ No activity or control logic

§ Object diagrams
§ Instances of a class diagram
§ „Snapshot“ of a system during runtime

31



Class

UML Class

§ Classes are represented by rectangles, which 
include the name of the class, its attributes 
and methods. 

§ The class name is in singular and starts with 
an upper case letter.

§ Attributes and methods are separated by 
horizontal lines. 

§ „+/-“: Attribute/Method is public/private 

Class

- Attribute

+ method1()
+ method2()

Class

Person

- Name

+ displayName()
+ changeName()

32



UML Class

§ Class attributes
§ Class attributes belong to the class, not to the object.

§ Class attributes have the same value for all instances (objects). 
For instance, attribute „Number“ to count the number of 
created objects for a class.

§ Class attributes are underlined in the class diagram.

§ Class methods
§ Class methods are executed within the class not on the object. 

§ E.g. „count number of created objects of the class“

§ The class method is underlined in the class diagram. 

33



Abstract Classes

§ Definition / aggregation of common properties

§ An abstract class does not allows objects to be instantiated.

§ Template to create subclasses

§ Abstract methods get “overwritten” by default

§ The name of abstract classes is written in italic. 

Fahrzeug

PKW Schiff Flugzeug

Vessel

Car Ship Airplane

34



Associations

§ Describes the relationship between two classes
§ It is represented by a line connecting the two classes. 
§ The multiplicity min..max attached to the association defines the minimal or 

maximal number of associations between the objects of the two classes.

(*) denotes any number of objects. 

1 1..*

Multiplicity

Class

Class2

- Attribute

+ method1()
+ method2()

Class

Class1

- Attribute

+ method1()
+ method2()

35



Associations

§ Aggregation
§ Denotes a 

„has a“ relationship

§ Composition
§ Composition is a stronger 

variant of the aggregation
§ Denotes an “owns a”

relationship

Ganzes Teil

0..*

Ensemble Fraction

PKW Motor

1 1

Fahrgestell

1

Ganzes existenzabh. Teil

1 0..*

Ensemble Existing Dependent 
Fraction

Auftrag Auftragsposition

1 1..*

Contract Order Item

Car Engine

Vehicle 
Chassis

1

36



Inheritance

§ Denotes an relation between 
parent class and subclass

§ Is represented by a line with an 
empty arrow at the end, 
pointing towards the parent 
class

§ Class2 inherits from Class1. 

§ Purpose: 
§ Reuse code, by objects which can 

be based on previously created 
objects

Class

Class1

Class

Class2

Class

User

Class

Employee

37



Instantiation

§ Representation of the relation “class-object“
§ An object is an instance of a class.

§ Class
§ Attributes
§ Methods

§ Object
§ Attribute values
§ Messages

Klasse1

Objekt1:Klasse1 Objekt2:Klasse1

Class1

Object1: Class1 Object2: Class1

38



Class Diagram

Klasse1

Klasse2Klasse3

1 0..*

Objekt1:Klasse2

Klasse4

Klasse5

1 *

1

*

Class1

Class2Class3

Class4

Class5

Object1: Class2

39



Class Diagram (Example)

+FileManager()
+readData() : void
+writeData() : void

-userFile : string
-dataFile : string
-user : string

FileManager
«interface»

GUI

+Medium()

-date : string
+book : int
+Magazine : int
+CD : int

Medium
+User()
+return() : void
+lend() : void
+searchDate() : Medium
+searchAuthor() : Medium
+search() : Medium

-userNumber : int
User

+BuchManagement()
+lend() : void
+search() : void
+return() : void
+getAllBooks() : void

BookManagement

+lend() : void
+chair()

Chair

+coworker()
+lend() : void

-firstName : string
Assistent / Coworker

40



Activity Diagram

§ Activity diagrams are used to model workflows in a system.

§ Central element “Activity”: An activity is any kind of action.

§ Activities are structured by responsibilities.

§ Different views:

§ Conceptional View
§ e.g. business processes

§ Implementation View
§ e.g. methods of objects

41



Activity Diagram
Notation Elements

Notation elements
§ Initial state/final state

§ Activity

§ Decision

§ Split/join

§ Responsibility

§ Activity flow

ActionState1

42



Activity Diagram

Partition3Partition2Partition1

Aktivität 1

Aktivität 2 Aktivität 3

Aktivität 4 Aktivität 5

Aktivität 6

[Bedingung 1] [Bedingung 2]

[Anfang]

[Ende]

Activity 1

Activity 2 Activity 3

Activity 4 Activity 5

Activity 6

[Condition 1] [Condition 2]

[Initiation]

[Conclusion]

43



Activity Diagram (Example)

44



Agenda

§ Object-Oriented Approach

§ Unified Modelling Language (UML)

§ Model-Driven Development and Architectures

45



Model-driven Development (MDD)

§ MDD is a concept for the development 
of software

§ The software system is described by an 
abstract model (e.g. based on UML)

§ The abstract model is typically 
independent from the target 
programming language, OS platform or 
other any underlying technology 

§ The abstract model allows an 
automatic transformation into code for 
multiple target OS platforms

§ The resulting code may vary from 
skeleton classes to complete software 
products 

Abstract Model

Windows MacOS

Linux

Code Generation

Java, .Net, Objective-C

46



What is an Abstract Model?

§ Abstraction of the real software system (not the real 
world)

§ Comprised of only the relevant aspects of a system –
irrelevant ones are ignored

§ Different abstraction levels are possible

User

Request

Data

System

47



Round-Trip Engineering

§ Modifications to the model can automatically 
be transformed into code and vice versa.

Model Code

Forward Engineering

Reverse Engineering

48



Automation in the 
Development Process

§ MDD promotes automation within the development process.

§ Automated analysis and verification of model
§ Since models do not contain implementation details they are easier to analyse.

§ Automated code generation from model, which guarantees the 
conformance to the model

§ Runtime monitoring based on a model
§ Runtime monitoring makes sure that the implementation follows the behaviour 

specified in the model.

§ Automated test generation
§ Models can be used to generate test cases for the implementation.

49



Benefits of MDD

§ Reduced development time

§ The model is timeless: It will age with the domain and not with the 
technology.

§ Improved documentation of the software system
§ A model is a better documentation than code
§ Improved readability – especially by non IT-personnel
§ Because of automated generation always consistent with the code

§ The system can be adjusted more easily. 

§ Platform and programming language independence

§ …

Source: Scheier, 2006

50



Model-Driven Architecture (MDA)

§ MDA was introduced by the Object Management Group (OMG).
§ MDA separates the business and application logic from the 

underlying implementation platform.
§ MDA is a forward engineering approach where first abstract model 

diagrams are developed which are later transformed to code.
§ The goal of MDA is to separate the conceptual design from the 

implementation architecture.

Source: OMG, 2011

51



Model-Driven Architecture 
Development Process

§ Developers develop platform independent 
models (PIM) for the software (e.g. readable 
design models or UML).

§ The platform independent models document 
the business functionality of a software ‒ 
independent from the technology-specific 
code.

§ After the target implementation platform 
was chosen, the platform independent 
models can automatically be translated to 
platform specific models (PSM). 

§ The platform specific models are used to 
guide the implementation for the chosen 
platform.

Platform Independent Model 
(PIM)

Platform Specific Model 
(PSM)

Code

52



MDA Benefits for the
Software Lifecycle

§ Implementation: MDA enables the integration of new target 
software platforms based on the existing design models.

§ Integration: Integration is easier since both the implementation 
and the design models exists at the time of integration.

§ Maintenance: The availability of the design in a machine-readable 
form gives developers direct access to the specification of the 
system, making maintenance much simpler.

§ Testing and simulation: The design models can be validated against 
existing requirements and executable models can be used to 
simulate the behaviour of the system.

53



Literature

§ Booch, G.; Rumbaugh, J.; Jacobson, I. (1999): Das UML-
Benutzerhandbuch. Addison-Wesley

§ Hitz et al. (2005): UML@Work: Objektorientierte 
Modellierung mit UML 2, d.punkt Verlag

§ Java User Group CH, 2006. Johannes Scheier: Model 
Driven Development, Grundprinzipien um das Potential zu
nutzen. Event: STAINLESS STEEL MODELS 
www.jug.ch/events/slides/061018_johannes_scheier.pdf

§ OMG (2014): 
http://www.omg.org/gettingstarted/specintro.htm#MDA

§ Stellmann, A.; Greene, J. (2011): Applied Software 
Project Management, O‘Reilly Media Inc

54

http://www.jug.ch/events/slides/061018_johannes_scheier.pdf
http://www.omg.org/gettingstarted/specintro.htm

